
UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Supporting Complex Data Querying over
Encrypted Data

- Murat Kantarcioglu

FEARLESS engineering

Outsourcing Data to Cloud

All primary cloud vendors offer RDBMS in cloud.

Presenter
Presentation Notes
All primary cloud vendors offer DAS.
Amazon RDS.
Microsoft SQL Azure.
Oracle Database Service.
Rackspace Cloud Database.

FEARLESS engineering

Introduction

NDSS Symposium 2012

Remote Server

Documents

Client

Search Data

Selective items
Sensitive

Untrusted
Server?

Sensitive Data
Leakage

FEARLESS engineering

Introduction

Remote Server

Client

Search over Encrypted Data

Selective Encrypted Items

Untrusted
Server?Solution: Data

Encryption

Documents

Encrypted

Requires: Efficient but Secure
Searchable Encryption Protocols

FEARLESS engineering

Simplified Searchable Encryption

NDSS Symposium 2012

BobAlice

q = Trapdoor(W2)

Rq = [1,0,1,0]

Req Documents

Doc1, Doc3

0 1 1 0

1 0 1 0

0 0 0 1

Tr(W1)

Tr(W2)

Tr(W3)

Presenter
Presentation Notes
The bitmaps shown in the picture are encrypted. We show them in plain text to explain the simplified model to the audiences.

FEARLESS engineering

Challenges*

• Many general cloud storage services do not
support complex crypto operations.
– Most of the popular cloud storage Dropbox,

GoogleDrive, Box, etc. doesn’t support such
computation.

– People keep sensitive data on those services

• Simple encrypted keyword query supported
only
– Multimedia queries are complex in nature

* DBSEC 2016

FEARLESS engineering

GOALS
• Query encrypted multimedia data

– Answer queries like “Find photos of John taken last summer in
Hawaii during sunset”

• No special requirement from server
– Use existing cloud storage fileservers.

• Question: What can be achieved if we do not have any support from
the server?

FEARLESS engineering

Phases

FEARLESS engineering

Extract output abstract example

FEARLESS engineering

Transform

• In this phase extract data are converted into
simpler and general form.

• Core idea is generate signature value based
on feature, value combination.

• Example: Location
– Input: <document_id, (longitude, latitude)>
– We look up the address of the geo location value and

generate search signatures based on country, state, city,
address, etc.

• S1 = H(“Location” || “Country ”|| Country_Value)
• S2 = H(“Location” || “State”|| State_Value)

– Output: < S1, document_id>, < S2 , document_id>

Presenter
Presentation Notes
H can be hash functions like SHA256 (but not keyed hash)

FEARLESS engineering

Load – Overview

• Here we encrypt and load the inverted index to
cloud file server.

• We observe that distribution of the length of the
document list of search signatures can be
approximated with Pareto distribution.

• Based on that we further block the document
list (details in full version)

• Then we generate search signatures of the
blocked document list.

• And keep certain information in a cache.

FEARLESS engineering

Load - Algorithm

FEARLESS engineering

Query and Post Process – Overview

• Given a query we first extract and transform it
• Next we generate search signatures
• Generate trapdoors
• Get those trapdoor related information
• Then decrypt the document ids
• Finally, remove false positives (if necessary)

FEARLESS engineering

Complex Feature – Face recognition

• An example of complex query: face
recognition.

• Interesting applications in homeland security!

• We adopted Eigenface mechanism to support
face recognition.

FEARLESS engineering

Eigenface – Review – Finding Eigen Vectors

• We adopted EigenFace recognition
method

• We start with 𝑀𝑀 faces of size 𝑁𝑁 × 𝑁𝑁
• Let, Γ1, … , Γ𝑀𝑀 be the 𝑁𝑁2 × 1 (vector)

representation of the square faces

• Ψ = 1
𝑀𝑀
∑𝑖𝑖=0𝑀𝑀 Γ𝑖𝑖 be the average of face

vectors.
• Subtract average from each face, 𝜙𝜙𝑖𝑖 =

Γ𝑖𝑖 − Ψ
• Find 𝑀𝑀 eigen vectors 𝑢𝑢𝑖𝑖 of 𝑨𝑨𝑻𝑻𝑨𝑨, where

A = 𝜙𝜙1𝜙𝜙2 …𝜙𝜙𝑀𝑀
• We take top 𝐾𝐾 of these Eigen vectors.
• Use projection for matching

FEARLESS engineering

Encrypted Eigenface Recognition - ETL

• Extract: Find face locations in image
– id(D1):<“Face”, (X:10px, Y:12px, H: 120px, W: 120px)>

• Transform:
– Convert face to point in EigenFace Plane ω
– Define Euclidian LSH function
– bucket_id = Find LSH bucket ids of ω
– search_signatures = generate_signatures(bucket_ids)

• Load:
– Upload search_signatures and document assignments

FEARLESS engineering

Encrypted Eigenface Recognition - QP

• Query:
– Given a new Face
– Convert to a point in eigen plane point
– Create bucket_ids of previously defined LSH

schema.
– Create search_signatures of the bucket_ids
– Now search the search search_signatures in the

encrypted index
• Post Process:

– Remove the false positives due to LSH

FEARLESS engineering

Experiments – Dataset Generation

• Randomly selected 20,109 images from
Yahoo Flickr Creative Commons 100 Million
Dataset (YFCC100M)

• Size 42.3GB
• Average file size 2.15MB
• Number of faces detected 7027
• Image with latitude and longitude embedded

in EXIF data 4102

FEARLESS engineering

Experiment – Features

• Our prototype image storage system can handle 4
types of features
– Location

• Find images based on location
– Time

• Find images that are taken on a specific time or in a time range
– Texture and Color

• Find images that are similar, e.g., images of sunset, sky, etc.
– Face

• Find images of a particular person.

FEARLESS engineering

Experiments – Index Size

Presenter
Presentation Notes
Growth linear

FEARLESS engineering

Experiment Query Time

Presenter
Presentation Notes
FCTH (Fuzzy Color Texture Histogram) – for similarity search
Widely used in image retrieval.
Face and FCTH took longer because of false positives removal

FEARLESS engineering

Conclusion

• We have proposed a practical framework for
performing complex queries over encrypted
data.

• Uses series of simple encrypted key-word
queries to answer complex queries
– This leaks access pattern and some similarity info.

about queries

FEARLESS engineering

How do we protect against access pattern
leakage attacks ??

• Almost all practical searchable encryption
schemes leak data access pattern for
efficiency which is subject to statistical
attacks.

• Do we need the optimal protection of
oblivious ram to ensure individual privacy?

FEARLESS engineering

Differential Privacy

• Minimize the risk by bounding the probability of
disclosure caused by participating in a dataset
– T1, T2 are sibling datasets

• Add random noise to query responses
– Laplace noise (μ, λ), where λ = S(Q) / ϵ
– S(Q): sensitivity, ϵ: privacy parameter

FEARLESS engineering

Differentially Private Access Pattern
Leakage

• Access Pattern: Memory addresses of the encrypted
records that are accessed against queries

• Differentially private access pattern statistics corresponds
leaking diff. private count queries in the form of:

select count(*) from Database where Predicate is true

• Given query set Q = {q1, …, qn}, DP adds Laplace noise
with magnitude S(Q)/ϵ to the true response
– S(Q): query set sensitivity
– ϵ: privacy parameter

FEARLESS engineering

Privacy-Aware Searchable Encryption

• Privacy-aware searchable encryption protects access
statistics with differential privacy.

FEARLESS engineering

Private Search Scheme

• Data owner builds private indexes on the desired
subsets of the attributes (e.g., {age}, {age, gender})

• To satisfy differential privacy (DP), owner keeps
limited amount of records in local cache and injects
some fake records into the outsourced set

FEARLESS engineering

Differentially Private Access Pattern

• Query set sensitivity is equal to the number of
observable query interfaces.

• Owner provides initial query interfaces (e.g., {age,
gender}, {city})

• Interactions among initial interfaces may lead to new
observable interfaces (e.g., {age, gender, city})

FEARLESS engineering

Data Replication

• Replication of data for distinct initial query interfaces
prevent additional interfaces due to interactions

• For each replication, data source is subject to
random permutation and encryption with distinct keys

FEARLESS engineering

Private Index Construction

• Private indexes enforce obfuscation on the access
pattern in addition to the content protection

• Positive noise is incorporated by fake record injection
while negative noise requires local cache placement

FEARLESS engineering

Private Index Construction

• Amount of negative noise should be limited to satisfy
the capacity constraint of the local cache

• Mean shift on the positive axis of Laplace distribution
enables capacity enforcement with the cost of more
fake record injection to the cloud buckets.

FEARLESS engineering

Record Encryption

• Both index cells and records that are sent to the
cloud are subject to encryption

• Memory addresses are encrypted through a random
oracle to satisfy adaptive semantic security model

FEARLESS engineering

Experimental Setup

• We selected a publicly available dataset of real personnel identifiers, namely
Census-Income dataset

• Dataset consists of 48,842 individual records, each with 8 categorical and 4
numerical attributes

• We selected random query interfaces from all possible interfaces that can be
generated on categorical attributes

• Default protocol parameters:
• ϵ = 0.5, |Δ| = 7, C = 2500

• 1000 random queries are issued against the server using selected query
interfaces

• Bandwidth consumption of the local cache and cloud server is utilized as the
main evaluation metric

FEARLESS engineering

Experiments - 1

• Overhead of the proposed scheme varied between
1.01 ~ 2X faster than typical ORAM implementation

ϵ Server Overhead (%) Cache Overhead (%)

0.3 6.62 1.60

0.4 4.88 1.32

0.5 3.93 1.12

0.6 3.25 0.97

0.7 2.78 0.87

FEARLESS engineering

Experiments - 2

• With increasing ϵ, both fake record and local cache
retrieval decreases due to less noise for DP

FEARLESS engineering

Experiments - 3

• More query interfaces (|Δ|) leads to increase in the
number of fake records and local cache placements
since sensitivity is proportional to |Δ|

• With increasing local cache capacity, fake record
retrieval from the server decreases

FEARLESS engineering

Use Hardware Support for Efficient Oblivious
Complex Data Analysis **

• Querying is not enough for many cloud applications.

• Need to build complex ML models

• Data scientists are not crypto experts
• Like to use PLs such Python and use libraries like Pandas etc.

• Need to protect the secrecy and integrity of big data and the ML
models using encryption

• Need to enable general programming language for data processing
while satisfying data obliviousness

• Make it efficient and practical enough for general use

** ACM CCS 2017

FEARLESS engineering

Intel SGX ??

FEARLESS engineering

How to Support Data Obliviousness Efficiently ??

• Idea 1: Use generic ORAM construction and do
not care about the specific data analytics
workload
– May be too costly in many cases for big data

• Idea 2: Create specific but oblivious data
analytics functions
– Matrix multiplication is oblivious !!
– Challenge: many tasks require non-obvious

algorithms to satisfy ORAM security definition
– Challenge: many users cannot be trusted to write

oblivious functions by default

FEARLESS engineering

How to Support Data Obliviousness Efficiently ??

• Idea, remove If statements using
vectorization

FEARLESS engineering

SGX- BigMatrix Architecture

FEARLESS engineering

Compiler

• Compiles our python like language into basic
commands

• Data obliviousness using data oblivious
building blocks and operation
vectorizations

FEARLESS engineering

Compiler-Output

FEARLESS engineering

Support for Basic Data Science

• E.g., SQL, Matrix Operations etc.

FEARLESS engineering

Other Important Features

• Automatic Sensitivity Analysis for flagging
sensitive information disclosure
– I.e., using sensitive output for allocating a new

array
• Cost based and secure optimization for

optimizing blocking
– Sgx do not support efficient data buffering

FEARLESS engineering

Experimental Evaluation

FEARLESS engineering

Comparison with ObliVM

FEARLESS engineering

Current Work: TEE + Searchable Encryption

• Building searchable encryption index requires
storage and memory on the client side
– Require complex processing for images etc.

• Securely outsource the index construction to
SGX
– Send encrypted doc-id, token-id pairs to SGX
– Use SGX to securely build the index

FEARLESS engineering

Questions?
• This work is supported by the following grants:

• Air Force Office of Scientific Research Grant FA9550-12-1-0082, National
Institutes of Health Grants 1R01LM009989 and 1R01HG006844, National
Science Foundation (NSF) Grants Career-CNS-0845803, CNS-0964350, CNS-
1016343, CNS-1111529, CNS-1228198, Army Research Office Grant
W911NF-12-1-0558.

• This talk is based on the following papers:
– M. S. Islam, M. Kuzu, M. Kantarcioglu: Access Pattern disclosure on Searchable

Encryption: Ramification, Attack and Mitigation. NDSS 2012
– M. S. Islam, M. Kuzu, M. Kantarcioglu: Inference attack against encrypted range

queries on outsourced databases. ACM CODASPY 2014: 235-246
– M. Kuzu, M. S. Islam, M. Kantarcioglu: Efficient privacy-aware search over

encrypted databases. ACM CODASPY 2014: 249-256
– Fahad Shaon, Murat Kantarcioglu: A Practical Framework for Executing Complex

Queries over Encrypted Multimedia Data. DBSec 2016: 179-195
– Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, Latifur Khan: SGX-BigMatrix: A

Practical Encrypted Data Analytic Framework With Trusted Processors. ACM
Conference on Computer and Communications Security 2017: 1211-1228

	Supporting Complex Data Querying over Encrypted Data
	Outsourcing Data to Cloud
	Introduction
	Introduction
	Simplified Searchable Encryption
	Challenges*
	GOALS
	Phases
	Extract output abstract example
	Transform
	Load – Overview
	Load - Algorithm
	Query and Post Process – Overview
	Complex Feature – Face recognition
	Eigenface – Review – Finding Eigen Vectors
	Encrypted Eigenface Recognition - ETL
	Encrypted Eigenface Recognition - QP
	Experiments – Dataset Generation
	Experiment – Features
	Experiments – Index Size
	Experiment Query Time
	Conclusion
	How do we protect against access pattern leakage attacks ??
	Differential Privacy
	Differentially Private Access Pattern Leakage
	Privacy-Aware Searchable Encryption
	Private Search Scheme
	Differentially Private Access Pattern
	Data Replication
	Private Index Construction
	Private Index Construction
	Record Encryption
	Experimental Setup
	Experiments - 1
	Experiments - 2
	Experiments - 3
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	SGX- BigMatrix Architecture
	Compiler
	Compiler-Output
	Support for Basic Data Science
	Other Important Features
	Experimental Evaluation
	Comparison with ObliVM
	Current Work: TEE + Searchable Encryption
	Questions?

