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Outsourcing Data to Cloud

All primary cloud vendors offer RDBMS in cloud.

Presenter
Presentation Notes
All primary cloud vendors offer DAS.
Amazon RDS.
Microsoft SQL Azure.
Oracle Database Service.
Rackspace Cloud Database.
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Simplified Searchable Encryption

NDSS Symposium 2012
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Presenter
Presentation Notes
The bitmaps shown in the picture are encrypted. We show them in plain text to explain the simplified model to the audiences.
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Challenges*

• Many general cloud storage services do not 
support complex crypto operations. 
– Most of the popular cloud storage Dropbox,  

GoogleDrive, Box, etc. doesn’t support such 
computation. 

– People keep sensitive data on those services

• Simple encrypted keyword query supported 
only
– Multimedia queries are complex in nature 

* DBSEC 2016
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GOALS
• Query encrypted multimedia data

– Answer queries like “Find photos of  John taken  last summer in 
Hawaii during sunset”

• No special requirement from server
– Use existing cloud storage fileservers.

• Question: What can be achieved if we do not have any support from 
the server?
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Phases
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Extract output abstract example
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Transform

• In this phase extract data are converted into 
simpler and general form. 

• Core idea is generate signature value based 
on feature, value combination. 

• Example: Location 
– Input: <document_id, (longitude, latitude)>
– We look up the address of the geo location value and 

generate search signatures based on  country, state, city, 
address, etc. 

• S1 = H(“Location” || “Country ”|| Country_Value) 
• S2 = H(“Location” || “State”|| State_Value) 

– Output: < S1, document_id>, < S2 , document_id>

Presenter
Presentation Notes
H can be hash functions like SHA256 (but not keyed hash) 
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Load – Overview

• Here we encrypt and load the inverted index to 
cloud file server.

• We observe that distribution of the length of the 
document list of search signatures can be 
approximated with Pareto distribution.

• Based on that we further block the document 
list (details in full version)

• Then we generate search signatures of the 
blocked document list.

• And keep certain information in a cache. 
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Load - Algorithm
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Query and Post Process – Overview

• Given a query we first extract and transform it 
• Next we generate search signatures 
• Generate trapdoors 
• Get those trapdoor related information 
• Then decrypt the document ids
• Finally, remove false positives (if necessary)
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Complex Feature – Face recognition

• An example of complex query: face 
recognition.

• Interesting applications in homeland security!

• We adopted Eigenface mechanism to support 
face recognition.
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Eigenface – Review – Finding Eigen Vectors 

• We adopted EigenFace recognition 
method

• We start with 𝑀𝑀 faces of size 𝑁𝑁 × 𝑁𝑁
• Let, Γ1, … , Γ𝑀𝑀 be the 𝑁𝑁2 × 1 (vector) 

representation of the square faces

• Ψ = 1
𝑀𝑀
∑𝑖𝑖=0𝑀𝑀 Γ𝑖𝑖 be the average of face 

vectors.
• Subtract average from each face, 𝜙𝜙𝑖𝑖 =

Γ𝑖𝑖 − Ψ
• Find 𝑀𝑀 eigen vectors 𝑢𝑢𝑖𝑖 of 𝑨𝑨𝑻𝑻𝑨𝑨, where 

A = 𝜙𝜙1𝜙𝜙2 …𝜙𝜙𝑀𝑀
• We take top 𝐾𝐾 of these Eigen vectors.
• Use projection for matching
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Encrypted Eigenface Recognition - ETL

• Extract: Find face locations in image 
– id(D1):<“Face”, (X:10px, Y:12px, H: 120px, W: 120px)>

• Transform:
– Convert face to point in EigenFace Plane ω
– Define Euclidian LSH function
– bucket_id = Find LSH bucket ids of ω
– search_signatures = generate_signatures(bucket_ids)

• Load: 
– Upload search_signatures and document assignments 
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Encrypted Eigenface Recognition - QP

• Query: 
– Given a new Face 
– Convert to a point in eigen plane point 
– Create bucket_ids of previously defined LSH 

schema.
– Create search_signatures of the bucket_ids
– Now search the search search_signatures in the 

encrypted index
• Post Process:  

– Remove the false positives due to LSH
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Experiments – Dataset Generation

• Randomly selected 20,109 images from 
Yahoo Flickr Creative Commons 100 Million 
Dataset (YFCC100M)

• Size 42.3GB
• Average file size 2.15MB
• Number of faces detected 7027
• Image with latitude and longitude embedded 

in EXIF data 4102
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Experiment – Features

• Our prototype image storage system can handle 4 
types of features 
– Location

• Find images based on location
– Time

• Find images that are taken on a specific time or in a time range
– Texture and Color

• Find images that are similar, e.g., images of sunset, sky, etc.
– Face 

• Find images of a particular person. 
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Experiments – Index Size

Presenter
Presentation Notes
Growth linear 
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Experiment Query Time

Presenter
Presentation Notes
FCTH (Fuzzy Color Texture Histogram) – for similarity search 
Widely used in image retrieval.
Face and FCTH took longer because of false positives removal
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Conclusion

• We have proposed a practical framework for 
performing complex queries over encrypted 
data. 

• Uses series of simple encrypted key-word 
queries to answer complex queries 
– This leaks access pattern and some similarity info. 

about queries
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How do we protect against access pattern 
leakage attacks ??

• Almost all practical searchable encryption 
schemes leak data access pattern for 
efficiency which is subject to statistical 
attacks.

• Do we need the optimal protection of 
oblivious ram to ensure individual privacy?
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Differential Privacy

• Minimize the risk by bounding the probability of
disclosure caused by participating in a dataset
– T1, T2 are sibling datasets

• Add random noise to query responses
– Laplace noise (μ, λ), where λ = S(Q) / ϵ
– S(Q): sensitivity, ϵ: privacy parameter
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Differentially Private Access Pattern 
Leakage 

• Access Pattern:  Memory addresses of the encrypted 
records that are accessed against queries

• Differentially private access pattern statistics corresponds 
leaking diff. private count queries in the form of:

select count(*) from Database where Predicate is true

• Given query set Q = {q1, …, qn}, DP adds Laplace noise 
with magnitude S(Q)/ϵ to the true response
– S(Q): query set sensitivity
– ϵ: privacy parameter
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Privacy-Aware Searchable Encryption

• Privacy-aware searchable encryption protects access 
statistics with differential privacy.
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Private Search Scheme

• Data owner builds private indexes on the desired 
subsets of the attributes (e.g., {age}, {age, gender})

• To satisfy differential privacy (DP), owner keeps 
limited amount of records in local cache and injects 
some fake records into the outsourced set
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Differentially Private Access Pattern

• Query set sensitivity is equal to the number of 
observable query interfaces.

• Owner provides initial query interfaces (e.g., {age, 
gender}, {city})

• Interactions among initial interfaces may lead to new 
observable interfaces  (e.g., {age, gender, city})
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Data Replication

• Replication of data for distinct initial query interfaces 
prevent additional interfaces due to interactions

• For each replication, data source is subject to 
random permutation and encryption with distinct keys
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Private Index Construction

• Private indexes enforce obfuscation on the access 
pattern in addition to the content protection

• Positive noise is incorporated by fake record injection 
while negative noise requires local cache placement
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Private Index Construction

• Amount of negative noise should be limited to satisfy  
the capacity constraint of the local cache

• Mean shift on the positive axis of Laplace distribution 
enables capacity enforcement with the cost of more 
fake record injection to the cloud buckets.
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Record Encryption

• Both index cells and records that are sent to the 
cloud are subject to encryption

• Memory addresses are encrypted through a random 
oracle to satisfy adaptive semantic security model
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Experimental Setup

• We selected a publicly available dataset of real personnel identifiers, namely 
Census-Income dataset

• Dataset consists of 48,842 individual records, each with 8 categorical and 4 
numerical attributes

• We selected random query interfaces from all possible interfaces that can be 
generated on categorical attributes

• Default protocol parameters:
• ϵ = 0.5, |Δ| = 7, C = 2500

• 1000 random queries are issued against the server using selected query 
interfaces 

• Bandwidth consumption of the local cache and cloud server is utilized as the 
main evaluation metric
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Experiments - 1

• Overhead of the proposed scheme varied between 
1.01 ~ 2X faster than typical ORAM implementation

ϵ Server Overhead (%) Cache Overhead (%)

0.3 6.62 1.60

0.4 4.88 1.32

0.5 3.93 1.12

0.6 3.25 0.97

0.7 2.78 0.87
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Experiments - 2

• With increasing ϵ, both fake record and local cache 
retrieval decreases due to less noise for DP
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Experiments - 3

• More query interfaces (|Δ|) leads to increase in the 
number of fake records and local cache placements 
since sensitivity is proportional to |Δ|

• With increasing local cache capacity, fake record 
retrieval from the server decreases
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Use Hardware Support for Efficient Oblivious 
Complex Data Analysis **

• Querying is not enough for many cloud applications.

• Need to build complex ML models

• Data scientists are not crypto experts
• Like to use PLs such Python and use libraries like Pandas etc.

• Need to protect the secrecy and integrity of big data and the ML 
models using encryption

• Need to enable general programming language for data processing 
while satisfying data obliviousness

• Make it efficient and practical enough for general use

** ACM CCS 2017
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Intel SGX ??
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How to Support Data Obliviousness Efficiently ??

• Idea 1: Use generic ORAM  construction and do 
not care about the specific data analytics 
workload
– May be too costly in many cases for big data

• Idea 2: Create specific but oblivious data 
analytics functions
– Matrix multiplication is oblivious !!
– Challenge: many tasks require non-obvious 

algorithms to satisfy ORAM security definition
– Challenge: many users cannot be trusted to write 

oblivious functions by default
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How to Support Data Obliviousness Efficiently ??

• Idea, remove If statements using 
vectorization
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SGX- BigMatrix Architecture
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Compiler

• Compiles our python like language into basic 
commands

• Data obliviousness using data oblivious 
building blocks and operation 
vectorizations
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Compiler-Output
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Support for Basic Data Science

• E.g., SQL, Matrix Operations etc.
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Other Important Features

• Automatic Sensitivity Analysis for flagging 
sensitive information disclosure
– I.e., using sensitive output for allocating a new 

array
• Cost based and secure optimization for 

optimizing blocking 
– Sgx do not support efficient data buffering



FEARLESS engineering

Experimental Evaluation
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Comparison with ObliVM



FEARLESS engineering

Current Work: TEE + Searchable Encryption

• Building searchable encryption index requires 
storage and memory on the client side
– Require complex processing for images etc.

• Securely outsource the index construction to 
SGX
– Send encrypted doc-id, token-id pairs to SGX
– Use SGX to securely build the index
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Questions?
• This work is supported by the following grants:

• Air Force Office of Scientific Research Grant FA9550-12-1-0082, National 
Institutes of Health Grants 1R01LM009989 and 1R01HG006844, National 
Science Foundation (NSF) Grants Career-CNS-0845803, CNS-0964350, CNS-
1016343, CNS-1111529, CNS-1228198, Army Research Office Grant 
W911NF-12-1-0558.

• This talk is based on the following papers:
– M. S. Islam, M. Kuzu, M. Kantarcioglu: Access Pattern disclosure on Searchable 

Encryption: Ramification, Attack and Mitigation. NDSS 2012
– M. S. Islam, M. Kuzu, M. Kantarcioglu: Inference attack against encrypted range 

queries on outsourced databases. ACM CODASPY 2014: 235-246
– M. Kuzu, M. S. Islam, M. Kantarcioglu:  Efficient privacy-aware search over 

encrypted databases. ACM CODASPY 2014: 249-256
– Fahad Shaon, Murat Kantarcioglu: A Practical Framework for Executing Complex 

Queries over Encrypted Multimedia Data. DBSec 2016: 179-195
– Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, Latifur Khan: SGX-BigMatrix: A 

Practical Encrypted Data Analytic Framework With Trusted Processors. ACM 
Conference on Computer and Communications Security 2017: 1211-1228
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